Potrzebowałeś ekstensjonalności, ponieważ wybrana przez Ciebie wartość parametru P
dla rec
była typem funkcji. Jeśli tego uniknąć i użyć typu Quotient
jak P
zamiast tego można to zrobić:
module Quotients where
open import Quotient
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (proof-irrelevance; _≡_)
private
open import Relation.Binary.Product.Pointwise
open import Data.Product
open import Function.Equality
map-quot : ∀ {c₁ ℓ₁ c₂ ℓ₂} {A : Setoid c₁ ℓ₁} {B : Setoid c₂ ℓ₂} → A ⟶ B → Quotient A → Quotient B
map-quot f = rec _ (λ x → [ f ⟨$⟩ x ]) (λ x≈y → [ cong f x≈y ]-cong)
map-quot-cong : ∀ {c₁ ℓ₁ c₂ ℓ₂} {A : Setoid c₁ ℓ₁} {B : Setoid c₂ ℓ₂} →
let open Setoid (A ⇨ B) renaming (_≈_ to _≐_) in
(f₁ f₂ : A ⟶ B) → (f₁ ≐ f₂) → (x : Quotient A) → map-quot f₁ x ≡ map-quot f₂ x
map-quot-cong {A = A} {B = B} f₁ f₂ eq x =
elim _
(λ x → map-quot f₁ x ≡ map-quot f₂ x)
(λ x' → [ eq (Setoid.refl A) ]-cong)
(λ x≈y → proof-irrelevance _ _)
x
_×-quot₁_ : ∀ {c ℓ} {A B : Setoid c ℓ} → Quotient A → Quotient B → Quotient (A ×-setoid B)
_×-quot₁_ {A = A} {B = B} qx qy = rec A (λ x → map-quot (f x) qy)
(λ {x} {x′} x≈x′ → map-quot-cong (f x) (f x′) (λ eq → x≈x′ , eq) qy) qx
where
module A = Setoid A
f = λ x → record { _⟨$⟩_ = _,_ x; cong = λ eq → (A.refl , eq) }
a inny sposób udowodnienia go, przechodząc przez _<$>_
(co zrobiłem pierwszy i postanowił nie wyrzucać):
infixl 3 _<$>_
_<$>_ : ∀ {c₁ ℓ₁ c₂ ℓ₂} {A : Setoid c₁ ℓ₁} {B : Setoid c₂ ℓ₂} → Quotient (A ⇨ B) → Quotient A → Quotient B
_<$>_ {A = A} {B = B} qf qa =
rec (A ⇨ B) {P = Quotient B}
(λ x → map-quot x qa)
(λ {f₁} {f₂} f₁≈f₂ → map-quot-cong f₁ f₂ f₁≈f₂ qa) qf
comma0 : ∀ {c ℓ} → ∀ {A B : Setoid c ℓ} → Setoid.Carrier (A ⇨ B ⇨ A ×-setoid B)
comma0 {A = A} {B = B} = record
{ _⟨$⟩_ = λ x → record
{ _⟨$⟩_ = λ y → x , y
; cong = λ eq → Setoid.refl A , eq
}
; cong = λ eqa eqb → eqa , eqb
}
comma : ∀ {c ℓ} → ∀ {A B : Setoid c ℓ} → Quotient (A ⇨ B ⇨ A ×-setoid B)
comma = [ comma0 ]
_×-quot₂_ : ∀ {c ℓ} {A B : Setoid c ℓ} → Quotient A → Quotient B → Quotient (A ×-setoid B)
a ×-quot₂ b = comma <$> a <$> b
I kolejna wersja _<$>_
, teraz za pomocą join
:
map-quot-f : ∀ {c₁ ℓ₁ c₂ ℓ₂} {A : Setoid c₁ ℓ₁} {B : Setoid c₂ ℓ₂}
→ Quotient A → (A ⇨ B) ⟶ (P.setoid (Quotient B))
map-quot-f qa = record { _⟨$⟩_ = λ f → map-quot f qa; cong = λ eq → map-quot-cong _ _ eq qa }
join : ∀ {c ℓ} → {S : Setoid c ℓ} → Quotient (P.setoid (Quotient S)) → Quotient S
join {S = S} q = rec (P.setoid (Quotient S)) (λ x → x) (λ eq → eq) q
infixl 3 _<$>_
_<$>_ : ∀ {c₁ ℓ₁ c₂ ℓ₂} {A : Setoid c₁ ℓ₁} {B : Setoid c₂ ℓ₂} → Quotient (A ⇨ B) → Quotient A → Quotient B
_<$>_ {A = A} {B = B} qf qa = join (map-quot (map-quot-f qa) qf)
Tutaj staje obvi że tam jest jakaś monada. Cóż za miłe odkrycie! :)
Zastanawiam się, dlaczego nie mogę wstawić 'comma0'. Czy to błąd w Agdzie? – Rotsor