Trzeba użyć filtr
package dataframe
import org.apache.spark.sql.SparkSession
/**
* @author [email protected]
*/
//
object DataFrameExample{
//
case class Employee(id: Integer, name: String, address: String, salary: Double, state: String,zip:Integer)
//
def main(args: Array[String]) {
val spark =
SparkSession.builder()
.appName("DataFrame-Basic")
.master("local[4]")
.getOrCreate()
import spark.implicits._
// create a sequence of case class objects
// (we defined the case class above)
val emp = Seq(
Employee(1, "vaquar khan", "111 algoinquin road chicago", 120000.00, "AZ",60173),
Employee(2, "Firdos Pasha", "1300 algoinquin road chicago", 2500000.00, "IL",50112),
Employee(3, "Zidan khan", "112 apt abcd timesqure NY", 50000.00, "NY",55490),
Employee(4, "Anwars khan", "washington dc", 120000.00, "VA",33245),
Employee(5, "Deepak sharma ", "rolling edows schumburg", 990090.00, "IL",60172),
Employee(6, "afaq khan", "saeed colony Bhopal", 1000000.00, "AZ",60173)
)
val employee=spark.sparkContext.parallelize(emp, 4).toDF()
employee.printSchema()
employee.show()
employee.select("state", "zip").show()
println("*** use filter() to choose rows")
employee.filter($"state".equalTo("IL")).show()
println("*** multi contidtion in filer || ")
employee.filter($"state".equalTo("IL") || $"state".equalTo("AZ")).show()
println("*** multi contidtion in filer && ")
employee.filter($"state".equalTo("AZ") && $"zip".equalTo("60173")).show()
}
}
Sądząc po tej linii: 'scala> od pyspark.sql. kolumna import Kolumny "wydaje się, że próbujesz użyć kodu Pyspark, gdy jesteś actuall y używając scala –
@TonTorres Tak, to był błąd, zdałem sobie z tego sprawę po opublikowaniu tego pytania. dokonanie tej edycji teraz. – dheee