2015-05-30 16 views
5

Użyłem jednego programu odwzorowującego, jednego reduktora i jednej klasy kombinatorów, ale otrzymuję błąd jak poniżej:niewłaściwa klasa wartości: klasa org.apache.hadoop.io.Text nie jest klasą org.apache.hadoop.io.IntWritable

java.io.IOException: wrong value class: class org.apache.hadoop.io.Text is not class org.apache.hadoop.io.IntWritable 
at org.apache.hadoop.mapred.IFile$Writer.append(IFile.java:199) 
at org.apache.hadoop.mapred.Task$CombineOutputCollector.collect(Task.java:1307) 
at org.apache.hadoop.mapred.Task$NewCombinerRunner$OutputConverter.write(Task.java:1623) 
at org.apache.hadoop.mapreduce.task.TaskInputOutputContextImpl.write(TaskInputOutputContextImpl.java:89) 
at org.apache.hadoop.mapreduce.lib.reduce.WrappedReducer$Context.write(WrappedReducer.java:105) 
at BookPublished1$Combine.reduce(BookPublished1.java:47) 
at BookPublished1$Combine.reduce(BookPublished1.java:1) 
at org.apache.hadoop.mapreduce.Reducer.run(Reducer.java:171) 
at org.apache.hadoop.mapred.Task$NewCombinerRunner.combine(Task.java:1644) 
at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.sortAndSpill(MapTask.java:1618) 
at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.flush(MapTask.java:1467) 
at org.apache.hadoop.mapred.MapTask$NewOutputCollector.close(MapTask.java:699) 
at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:769) 
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:339) 
at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:162) 
at java.security.AccessController.doPrivileged(Native Method) 
at javax.security.auth.Subject.doAs(Subject.java:415) 
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1491) 
at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:157) 

Mój cały program wygląda następująco:

import java.io.IOException; 

import org.apache.hadoop.io.FloatWritable; 
import org.apache.hadoop.io.IntWritable; 
import org.apache.hadoop.io.LongWritable; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.mapreduce.Mapper; 
import org.apache.hadoop.mapreduce.Reducer; 
import org.apache.hadoop.conf.Configuration; 
import org.apache.hadoop.mapreduce.Job; 
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; 
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; 
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 
import org.apache.hadoop.fs.Path; 


public class BookPublished1 { 

    public static class Map extends Mapper<LongWritable,Text,Text,IntWritable>{ 

     public void map(LongWritable key, Text value,Context context) 
       throws IOException,InterruptedException { 

      String line = value.toString(); 
      String [] strYear = line.split(";"); 
      context.write(new Text(strYear[3]), new IntWritable(1)); 
      } 


     } 


    public static class Combine extends Reducer<Text,IntWritable,Text,Text>{ 

     public void reduce(Text key, Iterable<IntWritable> values,Context context) 
       throws IOException,InterruptedException { 
      int sum=0; 
      // TODO Auto-generated method stub 
      for(IntWritable x: values) 
      { 
       sum+=x.get(); 
      } 



      context.write(new Text("BookSummary"), new Text(key + "_"+ sum)); 

     } 

    } 
public static class Reduce extends Reducer<Text,Text,Text,FloatWritable>{ 

     public void reduce(Text key, Iterable<Text> values,Context context)throws IOException,InterruptedException 
      { 
      Long publishYear =0L, max=Long.MAX_VALUE; 
          Text publishYear1 = null,maxYear=null; 
          Long publishValue= 0L; 
      String compositeString; 
      String compositeStringArray[]; 
      // TODO Auto-generated method stub 
      for(Text x: values) 
      { 
               compositeString = x.toString(); 
       compositeStringArray = compositeString.split("_"); 
       publishYear1=new Text(compositeStringArray[0]); 
       publishValue=new Long(compositeStringArray[1]); 
       if(publishValue > max){ 
       max=publishValue; 
       maxYear=publishYear1; 

      } 
      } 
     Text keyText= new Text("max" + " (" + maxYear.toString() + ") : "); 

      context.write(keyText, new FloatWritable(max)); 



    } 
} 


    public static void main(String[] args) throws Exception { 
     Configuration conf= new Configuration(); 
     Job job = new Job(conf,"BookPublished"); 

     job.setJarByClass(BookPublished1.class); 
     job.setMapperClass(Map.class); 
     job.setReducerClass(Reduce.class); 
     job.setCombinerClass(Combine.class); 
     job.setMapOutputKeyClass(Text.class); 
     job.setMapOutputValueClass(IntWritable.class); 
     job.setOutputKeyClass(Text.class); 
     job.setOutputValueClass(FloatWritable.class); 
     job.setInputFormatClass(TextInputFormat.class); 
     job.setOutputFormatClass(TextOutputFormat.class); 



     Path outputPath = new Path(args[1]);  
       FileInputFormat.addInputPath(job, new Path(args[0])); 
       FileOutputFormat.setOutputPath(job, new Path(args[1])); 


     outputPath.getFileSystem(conf).delete(outputPath); 
     System.exit(job.waitForCompletion(true) ? 0 : 1); 
    } 

} 

proszę mi pomóc z rozdzielczością.

Odpowiedz

7

Typy wyjściowe kombinatora musi dopasować typy wyjściowe programu odwzorowującego. Hadoop nie gwarantuje, ile razy kombinator jest stosowany, lub że jest w ogóle stosowany. I tak się dzieje w twoim przypadku.

Wartości z mapy (<Text, IntWritable>) przechodzą bezpośrednio do zmniejszenia tam, gdzie spodziewane są typy <Text, Text>.

+0

Dzięki vanekjar .. –