2017-01-04 31 views

Odpowiedz

3

Jeśli pre-procesowego kod z transpilerem Coconut, który implementuje optymalizację wywołań końcowych, są one całkowicie równoważne (tak szybkie, jak szybsza wersja nie przetworzona), więc możesz użyć dowolnego stylu, który jest dla ciebie wygodniejszy.

# Save berna1111's code as rk4.coco; no modifications necessary. 
$ coconut --target 3 rk4.coco & python3 rk4.py 
     50007 function calls in 0.055 seconds 

    Ordered by: standard name 

    ncalls tottime percall cumtime percall filename:lineno(function) 
     1 0.000 0.000 0.097 0.097 <string>:1(<module>) 
    40000 0.038 0.000 0.038 0.000 rk4.py:243(f) 
     1 0.000 0.000 0.000 0.000 rk4.py:246(RK4) 
    10000 0.007 0.000 0.088 0.000 rk4.py:247(<lambda>) 
     1 0.010 0.010 0.097 0.097 rk4.py:250(test_RK4) 
     1 0.000 0.000 0.097 0.097 {built-in method builtins.exec} 
     2 0.000 0.000 0.000 0.000 {built-in method numpy.core.multiarray.empty} 
     1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} 


     50006 function calls in 0.057 seconds 

    Ordered by: standard name 

    ncalls tottime percall cumtime percall filename:lineno(function) 
     1 0.000 0.000 0.057 0.057 <string>:1(<module>) 
    40000 0.030 0.000 0.030 0.000 rk4.py:243(f) 
    10000 0.019 0.000 0.049 0.000 rk4.py:265(rk4_step) 
     1 0.007 0.007 0.057 0.057 rk4.py:273(test_rk4) 
     1 0.000 0.000 0.057 0.057 {built-in method builtins.exec} 
     2 0.000 0.000 0.000 0.000 {built-in method numpy.core.multiarray.empty} 
     1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} 
4

I dostosowany kod w podanym linku i wykorzystywane cProfile porównać obie techniki:

import numpy as np 
import cProfile as cP 

def theory(t): 
    return (t**2 + 4.)**2/16. 

def f(x, y): 
    return x * np.sqrt(y) 

def RK4(f): 
    return lambda t, y, dt: (
      lambda dy1: (
      lambda dy2: (
      lambda dy3: (
      lambda dy4: (dy1 + 2*dy2 + 2*dy3 + dy4)/6 
        )(dt * f(t + dt , y + dy3 )) 
        )(dt * f(t + dt/2, y + dy2/2)) 
        )(dt * f(t + dt/2, y + dy1/2)) 
        )(dt * f(t  , y  )) 


def test_RK4(dy=f, x0=0., y0=1., x1=10, n=10): 
    vx = np.empty(n+1) 
    vy = np.empty(n+1) 
    dy = RK4(f=dy) 
    dx = (x1 - x0)/float(n) 
    vx[0] = x = x0 
    vy[0] = y = y0 
    i = 1 
    while i <= n: 
     vx[i], vy[i] = x + dx, y + dy(x, y, dx) 
     x, y = vx[i], vy[i] 
     i += 1 
    return vx, vy 


def rk4_step(dy, x, y, dx): 
    k1 = dx * dy(x, y) 
    k2 = dx * dy(x + 0.5 * dx, y + 0.5 * k1) 
    k3 = dx * dy(x + 0.5 * dx, y + 0.5 * k2) 
    k4 = dx * dy(x + dx, y + k3) 
    return x + dx, y + (k1 + k2 + k2 + k3 + k3 + k4)/6. 


def test_rk4(dy=f, x0=0., y0=1., x1=10, n=10): 
    vx = np.empty(n+1) 
    vy = np.empty(n+1) 
    dx = (x1 - x0)/float(n) 
    vx[0] = x = x0 
    vy[0] = y = y0 
    i = 1 
    while i <= n: 
     vx[i], vy[i] = rk4_step(dy=dy, x=x, y=y, dx=dx) 
     x, y = vx[i], vy[i] 
     i += 1 
    return vx, vy 

cP.run("test_RK4(n=10000)") 
cP.run("test_rk4(n=10000)") 

I got:

  90006 function calls in 0.095 seconds 

    Ordered by: standard name 

    ncalls tottime percall cumtime percall filename:lineno(function) 
     1 0.000 0.000 0.095 0.095 <string>:1(<module>) 
    40000 0.036 0.000 0.036 0.000 untitled1.py:13(f) 
     1 0.000 0.000 0.000 0.000 untitled1.py:16(RK4) 
    10000 0.008 0.000 0.086 0.000 untitled1.py:17(<lambda>) 
    10000 0.012 0.000 0.069 0.000 untitled1.py:18(<lambda>) 
    10000 0.012 0.000 0.048 0.000 untitled1.py:19(<lambda>) 
    10000 0.009 0.000 0.027 0.000 untitled1.py:20(<lambda>) 
    10000 0.009 0.000 0.009 0.000 untitled1.py:21(<lambda>) 
     1 0.009 0.009 0.095 0.095 untitled1.py:28(test_RK4) 
     1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} 
     2 0.000 0.000 0.000 0.000 {numpy.core.multiarray.empty} 


     50005 function calls in 0.064 seconds 

    Ordered by: standard name 

    ncalls tottime percall cumtime percall filename:lineno(function) 
     1 0.000 0.000 0.064 0.064 <string>:1(<module>) 
    40000 0.032 0.000 0.032 0.000 untitled1.py:13(f) 
    10000 0.026 0.000 0.058 0.000 untitled1.py:43(rk4_step) 
     1 0.006 0.006 0.064 0.064 untitled1.py:51(test_rk4) 
     1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} 
     2 0.000 0.000 0.000 0.000 {numpy.core.multiarray.empty} 

Więc chciałbym powiedzieć function calloverhead w "lambda "wdrożenie spowalnia.

Niemniej jednak pamiętaj, że jakoś wydają mi się, że straciłem trochę precyzji, jak wyniki, mimo zgadzając się ze sobą, są bardziej, niż te w przykładzie:

>>> vx, vy = test_rk4() 
>>> vy 
array([ 1.  , 1.56110667, 3.99324757, ..., 288.78174798, 
     451.27952013, 675.64427775]) 
>>> vx, vy = test_RK4() 
>>> vy 
array([ 1.  , 1.56110667, 3.99324757, ..., 288.78174798, 
     451.27952013, 675.64427775]) 
2

Zarówno @ berna1111, jak i @ matt2000 są poprawne. Wersja lambda ma dodatkową nadwyżkę dzięki wywołaniom funkcji. Optymalizacja ogona wywołuje konwersje ogona w pętlę while (tzn. Automatycznie konwertuje wersję lambda na wersję while), eliminując narzut związany z wywołaniem funkcji.

Przeczytaj, https://stackoverflow.com/a/13592002/7421639, dlaczego Python nie robi tej optymalizacji automatycznie i musisz użyć narzędzia, takiego jak kokos, aby zrobić przepustkę przed procesem.