Możliwym rozwiązaniem jest wymienić wszystkie bity w tablicy i dla wszystkich „jeden” bity ustawić odpowiedni bit w tablicy UInt8
:
func bitsToBytes(bits: [Bit]) -> [UInt8] {
let numBits = bits.count
let numBytes = (numBits + 7)/8
var bytes = [UInt8](count : numBytes, repeatedValue : 0)
for (index, bit) in enumerate(bits) {
if bit == .One {
bytes[index/8] += 1 << (7 - index % 8)
}
}
return bytes
}
Główną ideą jest to, że dla danego index
w tablicy bitów, index/8
jest odpowiednim indeksem w tablicy bajtów, i index % 8
jest pozycją bitu w bajcie. Możesz użyć index % 8
lub 7 - index % 8
jako wartość przesunięcia, w zależności od żądanej kolejności bitów .
przykład:
// 0110 0100 0000 1001
let bits : [Bit] = [.Zero, .One, .One, .Zero, .Zero, .One, .Zero, .Zero, .Zero, .Zero, .Zero, .Zero, .One, .Zero, .Zero, .One]
let bytes = bitsToBytes(bits)
println(bytes) // [100, 9]
Alternatywnie można "inline" obliczenie dla każdej grupy 8 bitów. Musisz sprawdzić, które rozwiązanie działa lepiej w twojej sprawie .
func bitsToBytes(bits: [Bit]) -> [UInt8] {
let numBits = bits.count
let numBytes = numBits/8
var bytes = [UInt8](count : numBytes, repeatedValue : 0)
for pos in 0 ..< numBytes {
let val = 128 * bits[8 * pos].toIntMax() +
64 * bits[8 * pos + 1].toIntMax() +
32 * bits[8 * pos + 2].toIntMax() +
16 * bits[8 * pos + 3].toIntMax() +
8 * bits[8 * pos + 4].toIntMax() +
4 * bits[8 * pos + 5].toIntMax() +
2 * bits[8 * pos + 6].toIntMax() +
1 * bits[8 * pos + 7].toIntMax()
bytes[pos] = UInt8(val)
}
return bytes
}
Tutaj, dla uproszczenia, jeśli liczba bitów nie jest wielokrotnością liczby 8, nadmiarowe bity są ignorowane. Ten sam kod może być także napisany trochę „Swiftier” jako
func bitsToBytes(bits: [Bit]) -> [UInt8] {
return map(0 ..< bits.count/8) {
pos in
let val = 128 * bits[8 * pos].toIntMax() +
64 * bits[8 * pos + 1].toIntMax() +
32 * bits[8 * pos + 2].toIntMax() +
16 * bits[8 * pos + 3].toIntMax() +
8 * bits[8 * pos + 4].toIntMax() +
4 * bits[8 * pos + 5].toIntMax() +
2 * bits[8 * pos + 6].toIntMax() +
1 * bits[8 * pos + 7].toIntMax()
return (UInt8(val))
}
}
Benchmarki: Oto teraz szybkie i-brudny aplikacja benchmarking (kod poniżej), porównując różne rozwiązania. Mierzy czas na konwersję 10 000 bitowych tablic o długości 256. Testy przeprowadzono na komputerze MacBook Pro 2,3 GHz Intel Core i7, i kodzie skompilowanym z konfiguracją "Release".
Wyniki szybkimi 1,1/Xcode 6.2 (6C131e):
Martin1: 0.0460730195045471
Martin2: 0.0280380249023438
Martin3: 0.0374950170516968
Antonio: 5.85363000631332
Nate : 4.86936402320862
Wyniki szybkimi 1,2/Xcode 6,3 (6D532l):
Martin1: 0.0228430032730103
Martin2: 0.00573796033859253
Martin3: 0.00732702016830444
Antonio: 0.515677988529205
Nate : 0.634827971458435
Kod:
protocol BitsToBytesConverter {
var ident : String { get }
func bitsToBytes(bits: [Bit]) -> [UInt8]
}
class MR1 : BitsToBytesConverter {
let ident = "Martin1"
func bitsToBytes(bits: [Bit]) -> [UInt8] {
let numBits = bits.count
let numBytes = (numBits + 7)/8
var bytes = [UInt8](count : numBytes, repeatedValue : 0)
for (index, bit) in enumerate(bits) {
if bit == .One {
bytes[index/8] += UInt8(1 << (7 - index % 8))
}
}
return bytes
}
}
class MR2 : BitsToBytesConverter {
let ident = "Martin2"
func bitsToBytes(bits: [Bit]) -> [UInt8] {
let numBits = bits.count
let numBytes = numBits/8
var bytes = [UInt8](count : numBytes, repeatedValue : 0)
for pos in 0 ..< numBytes {
let val = 128 * bits[8 * pos].toIntMax() +
64 * bits[8 * pos + 1].toIntMax() +
32 * bits[8 * pos + 2].toIntMax() +
16 * bits[8 * pos + 3].toIntMax() +
8 * bits[8 * pos + 4].toIntMax() +
4 * bits[8 * pos + 5].toIntMax() +
2 * bits[8 * pos + 6].toIntMax() +
1 * bits[8 * pos + 7].toIntMax()
bytes[pos] = UInt8(val)
}
return bytes
}
}
class MR3 : BitsToBytesConverter {
let ident = "Martin3"
func bitsToBytes(bits: [Bit]) -> [UInt8] {
return map(0 ..< bits.count/8) {
pos in
let val = 128 * bits[8 * pos].toIntMax() +
64 * bits[8 * pos + 1].toIntMax() +
32 * bits[8 * pos + 2].toIntMax() +
16 * bits[8 * pos + 3].toIntMax() +
8 * bits[8 * pos + 4].toIntMax() +
4 * bits[8 * pos + 5].toIntMax() +
2 * bits[8 * pos + 6].toIntMax() +
1 * bits[8 * pos + 7].toIntMax()
return (UInt8(val))
}
}
}
class AB : BitsToBytesConverter {
let ident = "Antonio"
typealias IntegerType = UInt8
func bitsToBytes(bits: [Bit]) -> [UInt8] {
let initial = [IntegerType]()
return reduce(enumerate(bits), initial) { array, element in
// The size in bits of a UInt8
let size = sizeof(IntegerType) * 8
// Create a mutable copy of the array returned at the previous iteration
var next = array
// If it's the first iteration, or an iteration divisible by the size of UInt8,
// append a new element to the array
if element.index % size == 0 {
next.append(0x00)
}
// Shift all bits of the last element to the left
next[next.count - 1] <<= 1
// If the current bit is one, add 1 to the rightmost bit
// Using a logical OR
if element.element == .One {
next[next.count - 1] |= 0x01
}
return next
}
}
}
class NC : BitsToBytesConverter {
let ident = "Nate "
func group<T>(array: [T], byCount groupCount: Int) -> [Slice<T>] {
// get a list of the start indices
let startIndices = stride(from: 0, to: array.count, by: groupCount)
// add `groupCount` to each to get the end indices
let endIndices = lazy(startIndices).map { advance($0, groupCount, array.count) }
// zip those together & map onto an array of slices of the input array
return map(Zip2(startIndices, endIndices)) {
array[$0.0 ..< $0.1]
}
}
func bitsToByte(bits: Slice<Bit>) -> UInt8 {
return bits.reduce(0) { accumulated, current in
accumulated << 1 | (current == .One ? 1 : 0)
}
}
func bitsToBytes(bits: [Bit]) -> [UInt8] {
return group(bits, byCount: 8).map(bitsToByte)
}
}
let numBits = 256 // Bits per bit array
let numBitArrays = 10000 // Number of bit arrays
func randomBits() -> [Bit] {
return map(0 ..< numBits) { _ in
Bit(rawValue: Int(arc4random_uniform(2)))!
}
}
func randomBitsArray() -> [[Bit]] {
return map(0 ..< numBitArrays) { _ in
randomBits()
}
}
let bitsArray = randomBitsArray()
func test(conv : BitsToBytesConverter) {
let x = conv.bitsToBytes([])
let startTime = NSDate()
for bits in bitsArray {
let bytes = conv.bitsToBytes(bits)
}
let duration = -startTime.timeIntervalSinceNow
println("\(conv.ident): \(duration)")
}
test(MR1())
test(MR2())
test(MR3())
test(AB())
test(NC())
Pierwsza metoda jest dokładnie tym, czego szukałem. Dzięki –
Interesujące wyniki ... Byłoby miło dokonać porównania z Swift 1.2, oczekuję zauważalnych usprawnień, szczególnie dla najwolniejszych - mogłem zrobić to sam, ale wyniki byłyby oparte na różnych metrykach z powodu różnic HW/SW. – Antonio
@Antonio: Dobry pomysł, gotowe. –