Mam dwa projekty kodu iterującego nad wektorami o rozmiarze 500. Jeden z projektów zawiera tablice 64-bitowych dubletów, a drugi projekt wykorzystuje tablice zawierające 32-bitowe liczby całkowite. Spodziewałem się, że 32-bitowy projekt będzie szybszy, ponieważ więcej przydatnych danych można spakować do pamięci podręcznej.Wektor 64-bitowego podwójnie szybszy do dot-produktu niż wektor 32-bitowego unsigned int?
Kompilator MSVC, most procesora Ivy, kompilacja trybu 64-bitowego.
to kod 1, stosując INTów 32-bitowe (działa w cyklach CPU):
#include <vector>
#include <iostream>
int main(){
std::vector<unsigned int> x1;
std::vector<unsigned int> x2;
std::vector<unsigned int> x3;
x1.resize(500);
x2.resize(500);
x3.resize(500);
for(int i =0; i<500; i++){
x1[i] = i;
x2[i] = 2*i;
x3[i] = 4*i;
}
int counter = 0;
while(counter < 1000){
unsigned long long start = 0;
unsigned long long end = 0;
double m = 0;
double n = 0;
start = __rdtsc();
for(int i=0; i < 500; i++){
unsigned int a = x1[i];
unsigned int b = x2[i];
unsigned int g = x3[i];
m = m + (a * g);
n = n + (b * g);
}
end = __rdtscp();
std::cout << (end-start) << "\t\t"<<m << n << std::endl;
counter++;
}
}
wytwarzania tego ASM (os):
start = __rdtscp(&p);
rdtscp
lea r8,[rbp+6Fh]
mov dword ptr [r8],ecx
shl rdx,20h
or rax,rdx
mov r10,rax
unsigned int p;
unsigned int q;
unsigned long long start = 0;
unsigned long long end = 0;
double m = 0;
mov r8,rbx
mov r9d,1F4h
unsigned int a = x1[i];
unsigned int b = x2[i];
unsigned int g = x3[i];
mov edx,dword ptr [r8+r15]
m = m + (a * g);
mov ecx,edx
imul ecx,dword ptr [r8+r14]
xorps xmm0,xmm0
cvtsi2sd xmm0,rcx
addsd xmm7,xmm0
n = n + (b * g);
imul edx,dword ptr [r8]
mov eax,edx
xorps xmm0,xmm0
cvtsi2sd xmm0,rax
addsd xmm8,xmm0
for(int i=0; i < 500; i++){
add r8,4
dec r9
jne main+0E5h (013F681261h)
}
end = __rdtscp(&q);
rdtscp
}
end = __rdtscp(&q);
lea r8,[rbp+6Fh]
mov dword ptr [r8],ecx
shl rdx,20h
or rdx,rax
to kod 2, używając 64-bitowych podwójnych (kod działa w cykli procesora):
#include <vector>
#include <iostream>
int main(){
std::vector<double> x1;
std::vector<double> x2;
std::vector<unsigned long long> x3;
x1.resize(500);
x2.resize(500);
x3.resize(500);
for(int i =0; i<500; i++){
x1[i] = i;
x2[i] = 2*i;
x3[i] = 4*i;
}
int counter = 0;
while(counter < 1000){
unsigned int p;
unsigned int q;
unsigned long long start = 0;
unsigned long long end = 0;
double m = 0;
double n = 0;
start = __rdtscp(&p);
for(int i=0; i < 500; i++){
double a = x1[i];
double b = x2[i];
unsigned long long g = x3[i];
m = m + (a * g);
n = n + (b * g);
}
end = __rdtscp(&q);
std::cout << (end-start) << "\t\t"<<m << n << std::endl;
counter++;
}
}
i tu jest ASM (-Os) Produkcja:
start = __rdtscp(&p);
rdtscp
lea r8,[rbp+6Fh]
mov dword ptr [r8],ecx
shl rdx,20h
or rax,rdx
mov r9,rax
unsigned int p;
unsigned int q;
unsigned long long start = 0;
unsigned long long end = 0;
double m = 0;
mov rdx,rbx
mov r8d,1F4h
double a = x1[i];
double b = x2[i];
unsigned long long g = x3[i];
mov rcx,qword ptr [rdx+r15]
xorps xmm1,xmm1
m = m + (a * g);
cvtsi2sd xmm1,rcx
test rcx,rcx
jns main+120h (013F32129Ch)
addsd xmm1,xmm9
movaps xmm0,xmm1
mulsd xmm0,mmword ptr [rdx+r14]
addsd xmm6,xmm0
n = n + (b * g);
mulsd xmm1,mmword ptr [rdx]
addsd xmm7,xmm1
for(int i=0; i < 500; i++){
add rdx,8
dec r8
jne main+10Ah (013F321286h)
}
end = __rdtscp(&q);
rdtscp
}
end = __rdtscp(&q);
lea r8,[rbp+6Fh]
mov dword ptr [r8],ecx
shl rdx,20h
or rdx,rax
To procesor 64-bitowy, prawda? –
Operacje zmiennoprzecinkowe mogą być wykonywane równolegle z innymi instrukcjami procesora, co może wyjaśniać rozbieżności. Mimo, że demontaż pokazuje obydwa rejestry xmm, więc teraz jestem zdezorientowany. –
Podobne pytanie z innego forum z pewnymi porównaniami. [zmiennoprzecinkowa vs liczba całkowita] (http://stackoverflow.com/questions/2550281/floating-point-vs-integer-calculations-on-modern-hardware). Z tego co rozumiem, rozszerzone precyzyjne procedury matematyczne, takie jak APFLOAT, wykonują swoje operacje za pomocą zmiennoprzecinkowego, ale nie wiem, czy są używane instrukcje typu SSE. – rcgldr