mam 2 podobne ramek danych strukturyzowanych tak:Scalanie multiindex dataframe w pand
ind = pd.MultiIndex.from_product([['Day 1','Day 2'],['D1','D2'],['Mean','StDev','StErr']], names = ['interval','device','stats'])
df = pd.DataFrame({'col1':[1,2,3,4,5,6,7,8,9,10,11,12]}, index = ind)
print(df)
col1
interval device stats
Day 1 D1 Mean 1
StDev 2
StErr 3
D2 Mean 4
StDev 5
StErr 6
Day 2 D1 Mean 7
StDev 8
StErr 9
D2 Mean 10
StDev 11
StErr 12
ind2 = pd.MultiIndex.from_product([['Day 1','Day 2'],['D1','D2'],['Ratio']], names = ['interval','device','stats'])
df2 = pd.DataFrame({'col1':[100,200,300,400]}, index = ind2)
print(df2)
col1
interval device stats
Day 1 D1 Ratio 100
D2 Ratio 200
Day 2 D1 Ratio 300
D2 Ratio 400
Staram się je połączyć, aby uzyskać w ten sposób:
col1
interval device stats
Day 1 D1 Mean 1
StDev 2
StErr 3
Ratio 100
D2 Mean 4
StDev 5
StErr 6
Ratio 200
Day 2 D1 Mean 7
StDev 8
StErr 9
Ratio 300
D2 Mean 10
StDev 11
StErr 12
Ratio 400
Próbowałem kilka różnych rzeczy używając join
, concat
i merge
, ale najbliżej, jakie udało mi się uzyskać, jest użycie df3 = pd.concat([df, df2], axis=1)
. Niestety, że daje mi to:
col1 col1
interval device stats
Day 1 D1 Mean 1 NaN
Ratio NaN 100
StDev 2 NaN
StErr 3 NaN
D2 Mean 4 NaN
Ratio NaN 200
StDev 5 NaN
StErr 6 NaN
Day 2 D1 Mean 7 NaN
Ratio NaN 300
StDev 8 NaN
StErr 9 NaN
D2 Mean 10 NaN
Ratio NaN 400
StDev 11 NaN
StErr 12 NaN