Próbuję stworzyć prostą symulację dla robota delta i chciałbym użyć kinematyki do przodu (bezpośrednia kinematyka) do obliczenia położenia końcowego efektora w przestrzeni przez podanie 3 kątów.Jak poprawnie obliczyć kinematykę bezpośrednią dla robota delta?
Zacząłem od Trossen Robotics Forum Delta Robot Tutorial i rozumiem większość matematyki, ale nie wszystkie. Zgubiłem się na ostatniej części w kinematykach do przodu, próbując obliczyć punkt, w którym przecinają się 3 kule. Przyjrzałem się ogólnie współrzędnym sferycznym, ale nie mogłem wyliczyć dwóch kątów używanych do znalezienia, aby obrócić w kierunku (do E (x, y, z)). Widzę, że rozwiązują równanie sfery, ale tu się gubię.
delta robot jest równoległy robot (czyli podstawy i końcówkę (głowy) zawsze pozostania równolegle). Efektem podstawowym i końcowym są trójkąty równoboczne, a nogi są (zazwyczaj) umieszczane w środku boków trójkąta.
Strona podstawy robota delta jest oznaczona f
. Strona efektora robota delta jest oznaczona e
. Górna część nogi jest oznaczona rf
, a dolna strona re
.
Początek (O) znajduje się pośrodku trójkąta bazowego. Serwosilniki znajdują się po środku boków trójkąta podstawowego (F1, F2, F3). Połączenia są oznaczone jako J1, J2, J3. Niższe nogi łączą efektor końcowy w punktach E1, E2, E3 , a E jest środkiem trójkąta efektora końcowego.
Potrafię łatwo obliczyć punkty F1, F2, F3 i J1, J2, J3. To E1, E2, E3 Mam problemy z. Z wyjaśnień rozumiem, że punkt J1 zostaje przesunięty nieco do wewnątrz (o połowę mediana efektora końcowego) o do J1 'i staje się środkiem kuli o promieniu re
(długość dolnej części nogi). Wykonanie tej czynności dla wszystkich połączeń spowoduje, że 3 kule przecinają się w tym samym miejscu: E (x, y, z). Rozwiązując równanie sfery znajdujemy E (x, y, z).
Istnieje również formuła wyjaśnił:
ale to gdzie ja zgubić. Moje umiejętności matematyczne nie są świetne. Czy ktoś mógłby wyjaśnić te informacje w prostszy sposób, , aby dowiedzieć się więcej na ten temat?
Użyłem również dostarczonego kodu przykładowego, który (jeśli masz przeglądarkę WebGL ), możesz uruchomić here. Kliknij i przeciągnij, aby obrócić scenę. Aby kontrolować trzy kąty, użyj przycisków q/Q, w/W, e/E, aby zmniejszyć/zwiększyć kąty.
Pełna Listing:
//Rhino measurements in cm
final float e = 21;//end effector side
final float f = 60.33;//base side
final float rf = 67.5;//upper leg length - radius of upper sphere
final float re = 95;//lower leg length - redius of lower sphere (with offset will join in E(x,y,z))
final float sqrt3 = sqrt(3.0);
final float sin120 = sqrt3/2.0;
final float cos120 = -0.5;
final float tan60 = sqrt3;
final float sin30 = 0.5;
final float tan30 = 1/sqrt3;
final float a120 = TWO_PI/3;
final float a60 = TWO_PI/6;
//bounds
final float minX = -200;
final float maxX = 200;
final float minY = -200;
final float maxY = 200;
final float minZ = -200;
final float maxZ = -10;
final float maxT = 54;
final float minT = -21;
float xp = 0;
float yp = 0;
float zp =-45;
float t1 = 0;//theta
float t2 = 0;
float t3 = 0;
float prevX;
float prevY;
float prevZ;
float prevT1;
float prevT2;
float prevT3;
boolean validPosition;
//cheap arcball
PVector offset,cameraRotation = new PVector(),cameraTargetRotation = new PVector();
void setup() {
size(900,600,P3D);
}
void draw() {
background(192);
pushMatrix();
translate(width * .5,height * .5,300);
//rotateY(map(mouseX,0,width,-PI,PI));
if (mousePressed && (mouseX > 300)){
cameraTargetRotation.x += -float(mouseY-pmouseY);
cameraTargetRotation.y += float(mouseX-pmouseX);
}
rotateX(radians(cameraRotation.x -= (cameraRotation.x - cameraTargetRotation.x) * .35));
rotateY(radians(cameraRotation.y -= (cameraRotation.y - cameraTargetRotation.y) * .35));
stroke(0);
et(f,color(255));
drawPoint(new PVector(),2,color(255,0,255));
float[] t = new float[]{t1,t2,t3};
for(int i = 0 ; i < 3; i++){
float a = HALF_PI+(radians(120)*i);
float r1 = f/1.25 * tan(radians(30));
float r2 = e/1.25 * tan(radians(30));
PVector F = new PVector(cos(a) * r1,sin(a) * r1,0);
PVector E = new PVector(cos(a) * r2,sin(a) * r2,0);
E.add(xp,yp,zp);
//J = F * rxMat
PMatrix3D m = new PMatrix3D();
m.translate(F.x,F.y,F.z);
m.rotateZ(a);
m.rotateY(radians(t[i]));
m.translate(rf,0,0);
PVector J = new PVector();
m.mult(new PVector(),J);
line(F.x,F.y,F.z,J.x,J.y,J.z);
line(E.x,E.y,E.z,J.x,J.y,J.z);
drawPoint(F,2,color(255,0,0));
drawPoint(J,2,color(255,255,0));
drawPoint(E,2,color(0,255,0));
//println(dist(F.x,F.y,F.z,J.x,J.y,J.z)+"\t"+rf);
println(dist(E.x,E.y,E.z,J.x,J.y,J.z)+"\t"+re);//length should not change
}
pushMatrix();
translate(xp,yp,zp);
drawPoint(new PVector(),2,color(0,255,255));
et(e,color(255));
popMatrix();
popMatrix();
}
void drawPoint(PVector p,float s,color c){
pushMatrix();
translate(p.x,p.y,p.z);
fill(c);
box(s);
popMatrix();
}
void et(float r,color c){//draw equilateral triangle, r is radius (median), c is colour
pushMatrix();
rotateZ(-HALF_PI);
fill(c);
beginShape();
for(int i = 0 ; i < 3; i++)
vertex(cos(a120*i) * r,sin(a120*i) * r,0);
endShape(CLOSE);
popMatrix();
}
void keyPressed(){
float amt = 3;
if(key == 'q') t1 -= amt;
if(key == 'Q') t1 += amt;
if(key == 'w') t2 -= amt;
if(key == 'W') t2 += amt;
if(key == 'e') t3 -= amt;
if(key == 'E') t3 += amt;
t1 = constrain(t1,minT,maxT);
t2 = constrain(t2,minT,maxT);
t3 = constrain(t3,minT,maxT);
dk();
}
void ik() {
if (xp < minX) { xp = minX; }
if (xp > maxX) { xp = maxX; }
if (yp < minX) { yp = minX; }
if (yp > maxX) { yp = maxX; }
if (zp < minZ) { zp = minZ; }
if (zp > maxZ) { zp = maxZ; }
validPosition = true;
//set the first angle
float theta1 = rotateYZ(xp, yp, zp);
if (theta1 != 999) {
float theta2 = rotateYZ(xp*cos120 + yp*sin120, yp*cos120-xp*sin120, zp); // rotate coords to +120 deg
if (theta2 != 999) {
float theta3 = rotateYZ(xp*cos120 - yp*sin120, yp*cos120+xp*sin120, zp); // rotate coords to -120 deg
if (theta3 != 999) {
//we succeeded - point exists
if (theta1 <= maxT && theta2 <= maxT && theta3 <= maxT && theta1 >= minT && theta2 >= minT && theta3 >= minT) { //bounds check
t1 = theta1;
t2 = theta2;
t3 = theta3;
} else {
validPosition = false;
}
} else {
validPosition = false;
}
} else {
validPosition = false;
}
} else {
validPosition = false;
}
//uh oh, we failed, revert to our last known good positions
if (!validPosition) {
xp = prevX;
yp = prevY;
zp = prevZ;
}
}
void dk() {
validPosition = true;
float t = (f-e)*tan30/2;
float dtr = PI/(float)180.0;
float theta1 = dtr*t1;
float theta2 = dtr*t2;
float theta3 = dtr*t3;
float y1 = -(t + rf*cos(theta1));
float z1 = -rf*sin(theta1);
float y2 = (t + rf*cos(theta2))*sin30;
float x2 = y2*tan60;
float z2 = -rf*sin(theta2);
float y3 = (t + rf*cos(theta3))*sin30;
float x3 = -y3*tan60;
float z3 = -rf*sin(theta3);
float dnm = (y2-y1)*x3-(y3-y1)*x2;
float w1 = y1*y1 + z1*z1;
float w2 = x2*x2 + y2*y2 + z2*z2;
float w3 = x3*x3 + y3*y3 + z3*z3;
// x = (a1*z + b1)/dnm
float a1 = (z2-z1)*(y3-y1)-(z3-z1)*(y2-y1);
float b1 = -((w2-w1)*(y3-y1)-(w3-w1)*(y2-y1))/2.0;
// y = (a2*z + b2)/dnm;
float a2 = -(z2-z1)*x3+(z3-z1)*x2;
float b2 = ((w2-w1)*x3 - (w3-w1)*x2)/2.0;
// a*z^2 + b*z + c = 0
float a = a1*a1 + a2*a2 + dnm*dnm;
float b = 2*(a1*b1 + a2*(b2-y1*dnm) - z1*dnm*dnm);
float c = (b2-y1*dnm)*(b2-y1*dnm) + b1*b1 + dnm*dnm*(z1*z1 - re*re);
// discriminant
float d = b*b - (float)4.0*a*c;
if (d < 0) { validPosition = false; }
zp = -(float)0.5*(b+sqrt(d))/a;
xp = (a1*zp + b1)/dnm;
yp = (a2*zp + b2)/dnm;
if (xp >= minX && xp <= maxX&& yp >= minX && yp <= maxX && zp >= minZ & zp <= maxZ) { //bounds check
} else {
validPosition = false;
}
if (!validPosition) {
xp = prevX;
yp = prevY;
zp = prevZ;
t1 = prevT1;
t2 = prevT2;
t3 = prevT3;
}
}
void storePrev() {
prevX = xp;
prevY = yp;
prevZ = zp;
prevT1 = t1;
prevT2 = t2;
prevT3 = t3;
}
float rotateYZ(float x0, float y0, float z0) {
float y1 = -0.5 * 0.57735 * f; // f/2 * tg 30
y0 -= 0.5 * 0.57735 * e; // shift center to edge
// z = a + b*y
float a = (x0*x0 + y0*y0 + z0*z0 +rf*rf - re*re - y1*y1)/(2*z0);
float b = (y1-y0)/z0;
// discriminant
float d = -(a+b*y1)*(a+b*y1)+rf*(b*b*rf+rf);
if (d < 0) return 999; // non-existing point
float yj = (y1 - a*b - sqrt(d))/(b*b + 1); // choosing outer point
float zj = a + b*yj;
return 180.0*atan(-zj/(y1 - yj))/PI + ((yj>y1)?180.0:0.0);
}
Problem jest, gdy wizualizacji, dolna część zmiany długości (jak widać w drukowanych message0 i nie powinien, co dodatkowo przyczynia się do mojego zamieszania.
Użyłem dostarczonego kodu C w języku Java/Processing, ale język programowania jest najmniej ważny.
[Edytuj przez spektre]
po prostu musiałem dodać ten obraz (ze względów dydaktycznych).
- wyłożonej nonsens nie jest najlepszym sposobem na uchwycenie kinematyki zdolności
- jak rozumiem bazy z silników jest na tym zdjęciu na górnej trójkątnej płaszczyzny
- a narzędzie jest na dolnej trójkąta samolot
Po podłączeniu (7) i (8) do (1) otrzymasz równanie kwadratowe, po prostu musisz je rozwiązać za pomocą 'z = (- b + -sqrt (b^2-4 * a * c))/(2 * a) 'gdzie' a' jest współczynnikiem 'z^2',' b' z 'z' i' c' jest wolnym współczynnikiem, następnie podłącz 'z' do (7) i (8), aby uzyskać' x' i 'y'. Wydaje mi się, że długość zmienia się, ponieważ nie jest możliwy żaden zestaw kątów, tzn. W rzeczywistości nie można zmienić jednego kąta, nie zmieniając odpowiednio dwóch pozostałych. – pseudoDust
@ pseudo Myślę, że twój komentarz powinien być odpowiedzią. Jest lepszy niż odpowiedź Spektre poniżej. – payala