UPDATE: My faktycznie użyć znacznie prostsze Keith Brown solution zamiast tego teraz zobaczyć kod źródłowy on przewidziany. Zaleta: Brak niezarządzanego kodu do utrzymania.
Jeśli nadal chcesz zobaczyć, jak to zrobić, używając C/C++, czytaj dalej ...
Zalecane tylko do użytku w programie Rozwój, a nie do produkcji, ale istnieje niski współczynnik tarcia do generowania certyfikatów X.509 (bez odwoływania się do makecert.exe
).
Jeśli masz dostęp do CryptoAPI w systemie Windows, chodzi o to, że używasz wywołań CryptoAPI do generowania publicznych i prywatnych kluczy RSA, podpisywania i kodowania nowego certyfikatu X.509, umieszczania go w magazynie certyfikatów tylko pamięci i następnie użyj PFXExportCertStore()
, aby wygenerować bajty .pfx, które następnie możesz przekazać do konstruktora X509Certificate2
.
Po utworzeniu instancji X509Certificate2
można ustawić ją jako właściwość odpowiednich obiektów WCF, a rzeczy po prostu zaczynają działać.
Mam przykładowy kod, który napisałem, brak gwarancji jakiegokolwiek rodzaju, a do napisania bitów, które muszą być niezarządzane, potrzebne jest trochę doświadczenia C. (byłoby o wiele trudniej zapisz P/Invoke dla wszystkich wywołań CryptoAPI, niż żeby ta część była w C/C++).
Przykład kodu C#, który używa niezarządzanego funkcji pomocnika:
public X509Certificate2 GenerateSelfSignedCertificate(string issuerCommonName, string keyPassword)
{
int pfxSize = -1;
IntPtr pfxBufferPtr = IntPtr.Zero;
IntPtr errorMessagePtr = IntPtr.Zero;
try
{
if (!X509GenerateSelfSignedCertificate(KeyContainerName, issuerCommonName, keyPassword, ref pfxSize, ref pfxBufferPtr, ref errorMessagePtr))
{
string errorMessage = null;
if (errorMessagePtr != IntPtr.Zero)
{
errorMessage = Marshal.PtrToStringUni(errorMessagePtr);
}
throw new ApplicationException(string.Format("Failed to generate X.509 server certificate. {0}", errorMessage ?? "Unspecified error."));
}
if (pfxBufferPtr == IntPtr.Zero)
{
throw new ApplicationException("Failed to generate X.509 server certificate. PFX buffer not initialized.");
}
if (pfxSize <= 0)
{
throw new ApplicationException("Failed to generate X.509 server certificate. PFX buffer size invalid.");
}
byte[] pfxBuffer = new byte[pfxSize];
Marshal.Copy(pfxBufferPtr, pfxBuffer, 0, pfxSize);
return new X509Certificate2(pfxBuffer, keyPassword);
}
finally
{
if (pfxBufferPtr != IntPtr.Zero)
{
Marshal.FreeHGlobal(pfxBufferPtr);
}
if (errorMessagePtr != IntPtr.Zero)
{
Marshal.FreeHGlobal(errorMessagePtr);
}
}
}
Realizacja X509GenerateSelfSignedCertificate
funkcja mogłaby wyglądać następująco (trzeba WinCrypt.h
):
BOOL X509GenerateSelfSignedCertificate(LPCTSTR keyContainerName, LPCTSTR issuerCommonName, LPCTSTR keyPassword, DWORD *pfxSize, BYTE **pfxBuffer, LPTSTR *errorMessage)
{
// Constants
#define CERT_DN_ATTR_COUNT 1
#define SIZE_SERIALNUMBER 8
#define EXPIRY_YEARS_FROM_NOW 2
#define MAX_COMMON_NAME 8192
#define MAX_PFX_SIZE 65535
// Declarations
HCRYPTPROV hProv = NULL;
BOOL result = FALSE;
// Sanity
if (pfxSize != NULL)
{
*pfxSize = -1;
}
if (pfxBuffer != NULL)
{
*pfxBuffer = NULL;
}
if (errorMessage != NULL)
{
*errorMessage = NULL;
}
if (keyContainerName == NULL || _tcslen(issuerCommonName) <= 0)
{
SetOutputErrorMessage(errorMessage, _T("Key container name must not be NULL or an empty string."));
return FALSE;
}
if (issuerCommonName == NULL || _tcslen(issuerCommonName) <= 0)
{
SetOutputErrorMessage(errorMessage, _T("Issuer common name must not be NULL or an empty string."));
return FALSE;
}
if (keyPassword == NULL || _tcslen(keyPassword) <= 0)
{
SetOutputErrorMessage(errorMessage, _T("Key password must not be NULL or an empty string."));
return FALSE;
}
// Start generating
USES_CONVERSION;
if (CryptAcquireContext(&hProv, keyContainerName, MS_DEF_RSA_SCHANNEL_PROV, PROV_RSA_SCHANNEL, CRYPT_MACHINE_KEYSET) ||
CryptAcquireContext(&hProv, keyContainerName, MS_DEF_RSA_SCHANNEL_PROV, PROV_RSA_SCHANNEL, CRYPT_NEWKEYSET | CRYPT_MACHINE_KEYSET))
{
HCRYPTKEY hKey = NULL;
// Generate 1024-bit RSA keypair.
if (CryptGenKey(hProv, AT_KEYEXCHANGE, CRYPT_EXPORTABLE | RSA1024BIT_KEY, &hKey))
{
DWORD pkSize = 0;
PCERT_PUBLIC_KEY_INFO pkInfo = NULL;
// Export public key for use by certificate signing.
if (CryptExportPublicKeyInfo(hProv, AT_KEYEXCHANGE, X509_ASN_ENCODING, NULL, &pkSize) &&
(pkInfo = (PCERT_PUBLIC_KEY_INFO)LocalAlloc(0, pkSize)) &&
CryptExportPublicKeyInfo(hProv, AT_KEYEXCHANGE, X509_ASN_ENCODING, pkInfo, &pkSize))
{
CERT_RDN_ATTR certDNAttrs[CERT_DN_ATTR_COUNT];
CERT_RDN certDN[CERT_DN_ATTR_COUNT] = {{1, &certDNAttrs[0]}};
CERT_NAME_INFO certNameInfo = {CERT_DN_ATTR_COUNT, &certDN[0]};
DWORD certNameSize = -1;
BYTE *certNameData = NULL;
certDNAttrs[0].dwValueType = CERT_RDN_UNICODE_STRING;
certDNAttrs[0].pszObjId = szOID_COMMON_NAME;
certDNAttrs[0].Value.cbData = (DWORD)(_tcslen(issuerCommonName) * sizeof(WCHAR));
certDNAttrs[0].Value.pbData = (BYTE*)T2W((LPTSTR)issuerCommonName);
// Encode issuer name into certificate name blob.
if (CryptEncodeObject(X509_ASN_ENCODING, X509_NAME, &certNameInfo, NULL, &certNameSize) &&
(certNameData = (BYTE*)LocalAlloc(0, certNameSize)) &&
CryptEncodeObject(X509_ASN_ENCODING, X509_NAME, &certNameInfo, certNameData, &certNameSize))
{
CERT_NAME_BLOB issuerName;
CERT_INFO certInfo;
SYSTEMTIME systemTime;
FILETIME notBefore;
FILETIME notAfter;
BYTE serialNumber[SIZE_SERIALNUMBER];
DWORD certSize = -1;
BYTE *certData = NULL;
issuerName.cbData = certNameSize;
issuerName.pbData = certNameData;
// Certificate should be valid for a decent window of time.
ZeroMemory(&certInfo, sizeof(certInfo));
GetSystemTime(&systemTime);
systemTime.wYear -= 1;
SystemTimeToFileTime(&systemTime, ¬Before);
systemTime.wYear += EXPIRY_YEARS_FROM_NOW;
SystemTimeToFileTime(&systemTime, ¬After);
// Generate a throwaway serial number.
if (CryptGenRandom(hProv, SIZE_SERIALNUMBER, serialNumber))
{
certInfo.dwVersion = CERT_V3;
certInfo.SerialNumber.cbData = SIZE_SERIALNUMBER;
certInfo.SerialNumber.pbData = serialNumber;
certInfo.SignatureAlgorithm.pszObjId = szOID_RSA_MD5RSA;
certInfo.Issuer = issuerName;
certInfo.NotBefore = notBefore;
certInfo.NotAfter = notAfter;
certInfo.Subject = issuerName;
certInfo.SubjectPublicKeyInfo = *pkInfo;
// Now sign and encode it.
if (CryptSignAndEncodeCertificate(hProv, AT_KEYEXCHANGE, X509_ASN_ENCODING, X509_CERT_TO_BE_SIGNED, (LPVOID)&certInfo, &(certInfo.SignatureAlgorithm), NULL, NULL, &certSize) &&
(certData = (BYTE*)LocalAlloc(0, certSize)) &&
CryptSignAndEncodeCertificate(hProv, AT_KEYEXCHANGE, X509_ASN_ENCODING, X509_CERT_TO_BE_SIGNED, (LPVOID)&certInfo, &(certInfo.SignatureAlgorithm), NULL, certData, &certSize))
{
HCERTSTORE hCertStore = NULL;
// Open a new temporary store.
if ((hCertStore = CertOpenStore(CERT_STORE_PROV_MEMORY, X509_ASN_ENCODING, NULL, CERT_STORE_CREATE_NEW_FLAG, NULL)))
{
PCCERT_CONTEXT certContext = NULL;
// Add to temporary store so we can use the PFX functions to export a store + private keys in PFX format.
if (CertAddEncodedCertificateToStore(hCertStore, X509_ASN_ENCODING, certData, certSize, CERT_STORE_ADD_NEW, &certContext))
{
CRYPT_KEY_PROV_INFO keyProviderInfo;
// Link keypair to certificate (without this the keypair gets "lost" on export).
ZeroMemory(&keyProviderInfo, sizeof(keyProviderInfo));
keyProviderInfo.pwszContainerName = T2W((LPTSTR)keyContainerName);
keyProviderInfo.pwszProvName = MS_DEF_RSA_SCHANNEL_PROV_W; /* _W used intentionally. struct hardcodes LPWSTR. */
keyProviderInfo.dwProvType = PROV_RSA_SCHANNEL;
keyProviderInfo.dwFlags = CRYPT_MACHINE_KEYSET;
keyProviderInfo.dwKeySpec = AT_KEYEXCHANGE;
// Finally, export to PFX and provide to caller.
if (CertSetCertificateContextProperty(certContext, CERT_KEY_PROV_INFO_PROP_ID, 0, (LPVOID)&keyProviderInfo))
{
CRYPT_DATA_BLOB pfxBlob;
DWORD pfxExportFlags = EXPORT_PRIVATE_KEYS | REPORT_NO_PRIVATE_KEY | REPORT_NOT_ABLE_TO_EXPORT_PRIVATE_KEY;
// Calculate size required.
ZeroMemory(&pfxBlob, sizeof(pfxBlob));
if (PFXExportCertStore(hCertStore, &pfxBlob, T2CW(keyPassword), pfxExportFlags))
{
pfxBlob.pbData = (BYTE *)LocalAlloc(0, pfxBlob.cbData);
if (pfxBlob.pbData != NULL)
{
// Now export.
if (PFXExportCertStore(hCertStore, &pfxBlob, T2CW(keyPassword), pfxExportFlags))
{
if (pfxSize != NULL)
{
*pfxSize = pfxBlob.cbData;
}
if (pfxBuffer != NULL)
{
// Caller must free this.
*pfxBuffer = pfxBlob.pbData;
}
else
{
// Caller did not provide target pointer to receive buffer, free ourselves.
LocalFree(pfxBlob.pbData);
}
result = TRUE;
}
else
{
SetOutputErrorMessage(errorMessage, _T("Failed to export certificate in PFX format (0x%08x)."), GetLastError());
}
}
else
{
SetOutputErrorMessage(errorMessage, _T("Failed to export certificate in PFX format, buffer allocation failure (0x%08x)."), GetLastError());
}
}
else
{
SetOutputErrorMessage(errorMessage, _T("Failed to export certificate in PFX format, failed to calculate buffer size (0x%08x)."), GetLastError());
}
}
else
{
SetOutputErrorMessage(errorMessage, _T("Failed to set certificate key context property (0x%08x)."), GetLastError());
}
}
else
{
SetOutputErrorMessage(errorMessage, _T("Failed to add certificate to temporary certificate store (0x%08x)."), GetLastError());
}
CertCloseStore(hCertStore, 0);
hCertStore = NULL;
}
else
{
SetOutputErrorMessage(errorMessage, _T("Failed to create temporary certificate store (0x%08x)."), GetLastError());
}
}
else
{
SetOutputErrorMessage(errorMessage, _T("Failed to sign/encode certificate or out of memory (0x%08x)."), GetLastError());
}
if (certData != NULL)
{
LocalFree(certData);
certData = NULL;
}
}
else
{
SetOutputErrorMessage(errorMessage, _T("Failed to generate certificate serial number (0x%08x)."), GetLastError());
}
}
else
{
SetOutputErrorMessage(errorMessage, _T("Failed to encode X.509 certificate name into ASN.1 or out of memory (0x%08x)."), GetLastError());
}
if (certNameData != NULL)
{
LocalFree(certNameData);
certNameData = NULL;
}
}
else
{
SetOutputErrorMessage(errorMessage, _T("Failed to export public key blob or out of memory (0x%08x)."), GetLastError());
}
if (pkInfo != NULL)
{
LocalFree(pkInfo);
pkInfo = NULL;
}
CryptDestroyKey(hKey);
hKey = NULL;
}
else
{
SetOutputErrorMessage(errorMessage, _T("Failed to generate public/private keypair for certificate (0x%08x)."), GetLastError());
}
CryptReleaseContext(hProv, 0);
hProv = NULL;
}
else
{
SetOutputErrorMessage(errorMessage, _T("Failed to acquire cryptographic context (0x%08x)."), GetLastError());
}
return result;
}
void
SetOutputErrorMessage(LPTSTR *errorMessage, LPCTSTR formatString, ...)
{
#define MAX_ERROR_MESSAGE 1024
va_list va;
if (errorMessage != NULL)
{
size_t sizeInBytes = (MAX_ERROR_MESSAGE * sizeof(TCHAR)) + 1;
LPTSTR message = (LPTSTR)LocalAlloc(0, sizeInBytes);
va_start(va, formatString);
ZeroMemory(message, sizeInBytes);
if (_vstprintf_s(message, MAX_ERROR_MESSAGE, formatString, va) == -1)
{
ZeroMemory(message, sizeInBytes);
_tcscpy_s(message, MAX_ERROR_MESSAGE, _T("Failed to build error message"));
}
*errorMessage = message;
va_end(va);
}
}
Użyliśmy tego celu wygenerowania Certyfikaty SSL przy starcie, co jest dobre, gdy chcesz tylko przetestować szyfrowanie i nie weryfikować zaufania/tożsamości, a generowanie trwa tylko około 2-3 sekund.
Gdzie jest twój pad jQuery! –
Obecnie używamy rozwiązania Keitha Eldera w firmie, utrzymywanie oddzielnych bibliotek DLL C++ było zbyt wielkim bólem. –
@Leon Breedt @Paul Stovell: Myślę, że oboje mówicie Keith Brown, prawda. –