Po przeczytaniu How Not to Sort by Average Rating, byłem ciekawy, czy ktoś ma implementację Pythona dla dolnej granicy przedziału ufności Wilsona dla parametru Bernoulliego?Python implementacja Wilson Score Interval?
Odpowiedz
Reddit używa interwału wynik Wilson za komentarz ranking, implementacja wyjaśnienie i python można znaleźć here
#Rewritten code from /r2/r2/lib/db/_sorts.pyx
from math import sqrt
def confidence(ups, downs):
n = ups + downs
if n == 0:
return 0
z = 1.0 #1.44 = 85%, 1.96 = 95%
phat = float(ups)/n
return ((phat + z*z/(2*n) - z * sqrt((phat*(1-phat)+z*z/(4*n))/n))/(1+z*z/n))
Jeśli chcesz tylko zamieścić link, zrób to w komentarzu. Jeśli publikujesz to jako odpowiedź, podaj więcej informacji z treści i/lub wyciągnij kod, aby nie każdy musiał podążać za linkiem, a odpowiedź ma wartość nawet wtedy, gdy link nie działa. – agf
Dodałem kod z linku Steef, więc mogę przyjąć jego odpowiedź. –
Ta odpowiedź powinna zostać poprawiona, aby uwzględnić poniższą modyfikację! – Vladtn
myślę, że ten ma złą wilson rozmowę, bo jeśli masz 1 up 0 w dół można dostać NaN, ponieważ nie można wykonać wartości ujemnej na wartości sqrt
.
prawidłowa można znaleźć patrząc na ruby przykład z artykułu How not to sort by average page:
return ((phat + z*z/(2*n) - z * sqrt((phat*(1-phat)+z*z/(4*n))/n))/(1+z*z/n))
Jeśli chcesz faktycznie obliczyć oo bezpośrednio związany z ufnością i chcą uniknąć instalowania numpy/scipy można użyć następującego fragmentu kodu,
import math
def binconf(p, n, c=0.95):
'''
Calculate binomial confidence interval based on the number of positive and
negative events observed. Uses Wilson score and approximations to inverse
of normal cumulative density function.
Parameters
----------
p: int
number of positive events observed
n: int
number of negative events observed
c : optional, [0,1]
confidence percentage. e.g. 0.95 means 95% confident the probability of
success lies between the 2 returned values
Returns
-------
theta_low : float
lower bound on confidence interval
theta_high : float
upper bound on confidence interval
'''
p, n = float(p), float(n)
N = p + n
if N == 0.0: return (0.0, 1.0)
p = p/N
z = normcdfi(1 - 0.5 * (1-c))
a1 = 1.0/(1.0 + z * z/N)
a2 = p + z * z/(2 * N)
a3 = z * math.sqrt(p * (1-p)/N + z * z/(4 * N * N))
return (a1 * (a2 - a3), a1 * (a2 + a3))
def erfi(x):
"""Approximation to inverse error function"""
a = 0.147 # MAGIC!!!
a1 = math.log(1 - x * x)
a2 = (
2.0/(math.pi * a)
+ a1/2.0
)
return (
sign(x) *
math.sqrt(math.sqrt(a2 * a2 - a1/a) - a2)
)
def sign(x):
if x < 0: return -1
if x == 0: return 0
if x > 0: return 1
def normcdfi(p, mu=0.0, sigma2=1.0):
"""Inverse CDF of normal distribution"""
if mu == 0.0 and sigma2 == 1.0:
return math.sqrt(2) * erfi(2 * p - 1)
else:
return mu + math.sqrt(sigma2) * normcdfi(p)
Aby uzyskać Wilson CI bez korekty ciągłości, można użyć proportion_confint
w statsmodels.stats.proportion
. Aby uzyskać CI Wilson z korekcją ciągłości, możesz użyć poniższego kodu.
# cf.
# [1] R. G. Newcombe. Two-sided confidence intervals for the single proportion, 1998
# [2] R. G. Newcombe. Interval Estimation for the difference between independent proportions: comparison of eleven methods, 1998
import numpy as np
from statsmodels.stats.proportion import proportion_confint
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
def propci_wilson_cc(count, nobs, alpha=0.05):
# get confidence limits for proportion
# using wilson score method w/ cont correction
# i.e. Method 4 in Newcombe [1];
# verified via Table 1
from scipy import stats
n = nobs
p = count/n
q = 1.-p
z = stats.norm.isf(alpha/2.)
z2 = z**2
denom = 2*(n+z2)
num = 2.*n*p+z2-1.-z*np.sqrt(z2-2-1./n+4*p*(n*q+1))
ci_l = num/denom
num = 2.*n*p+z2+1.+z*np.sqrt(z2+2-1./n+4*p*(n*q-1))
ci_u = num/denom
if p == 0:
ci_l = 0.
elif p == 1:
ci_u = 1.
return ci_l, ci_u
def dpropci_wilson_nocc(a,m,b,n,alpha=0.05):
# get confidence limits for difference in proportions
# a/m - b/n
# using wilson score method WITHOUT cont correction
# i.e. Method 10 in Newcombe [2]
# verified via Table II
theta = a/m - b/n
l1, u1 = proportion_confint(count=a, nobs=m, alpha=0.05, method='wilson')
l2, u2 = proportion_confint(count=b, nobs=n, alpha=0.05, method='wilson')
ci_u = theta + np.sqrt((a/m-u1)**2+(b/n-l2)**2)
ci_l = theta - np.sqrt((a/m-l1)**2+(b/n-u2)**2)
return ci_l, ci_u
def dpropci_wilson_cc(a,m,b,n,alpha=0.05):
# get confidence limits for difference in proportions
# a/m - b/n
# using wilson score method w/ cont correction
# i.e. Method 11 in Newcombe [2]
# verified via Table II
theta = a/m - b/n
l1, u1 = propci_wilson_cc(count=a, nobs=m, alpha=alpha)
l2, u2 = propci_wilson_cc(count=b, nobs=n, alpha=alpha)
ci_u = theta + np.sqrt((a/m-u1)**2+(b/n-l2)**2)
ci_l = theta - np.sqrt((a/m-l1)**2+(b/n-u2)**2)
return ci_l, ci_u
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# single proportion testing
# these come from Newcombe [1] (Table 1)
a_vec = np.array([81, 15, 0, 1])
m_vec = np.array([263, 148, 20, 29])
for (a,m) in zip(a_vec,m_vec):
l1, u1 = proportion_confint(count=a, nobs=m, alpha=0.05, method='wilson')
l2, u2 = propci_wilson_cc(count=a, nobs=m, alpha=0.05)
print(a,m,l1,u1,' ',l2,u2)
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# difference in proportions testing
# these come from Newcombe [2] (Table II)
a_vec = np.array([56,9,6,5,0,0,10,10],dtype=float)
m_vec = np.array([70,10,7,56,10,10,10,10],dtype=float)
b_vec = np.array([48,3,2,0,0,0,0,0],dtype=float)
n_vec = np.array([80,10,7,29,20,10,20,10],dtype=float)
print('\nWilson without CC')
for (a,m,b,n) in zip(a_vec,m_vec,b_vec,n_vec):
l, u = dpropci_wilson_nocc(a,m,b,n,alpha=0.05)
print('{:2.0f}/{:2.0f}-{:2.0f}/{:2.0f} ; {:6.4f} ; {:8.4f}, {:8.4f}'.format(a,m,b,n,a/m-b/n,l,u))
print('\nWilson with CC')
for (a,m,b,n) in zip(a_vec,m_vec,b_vec,n_vec):
l, u = dpropci_wilson_cc(a,m,b,n,alpha=0.05)
print('{:2.0f}/{:2.0f}-{:2.0f}/{:2.0f} ; {:6.4f} ; {:8.4f}, {:8.4f}'.format(a,m,b,n,a/m-b/n,l,u))
HTH
Przyjęte rozwiązanie wydaje się używać zakodowane z-wartość (najlepiej pod kątem wydajności).
W przypadku, gdy chciał bezpośredni Pythona odpowiednik wzoru ruby z the blogpost z dynamicznym z-wartość (na podstawie przedziału ufności):
import math
import scipy.stats as st
def ci_lower_bound(pos, n, confidence):
if n == 0:
return 0
z = st.norm.ppf(1 - (1 - confidence)/2)
phat = 1.0 * pos/n
return (phat + z * z/(2 * n) - z * math.sqrt((phat * (1 - phat) + z * z/(4 * n))/n))/(1 + z * z/n)
dla większej precyzji, jeśli n * p-cap * (1-p-cap) jest poniżej pewnego progu, powiedzmy 30-35. Użyłbym t-rozkładu z df: (pos + neg) -2 zamiast normalnego distr. w każdym razie. tylko moje dwa centy choć – luke14free