trzy alternatywne rozwiązania:
1: Z reshape2
library(reshape2)
long <- melt(wide, id.vars = c("Code", "Country"))
dawanie:
Code Country variable value
1 AFG Afghanistan 1950 20,249
2 ALB Albania 1950 8,097
3 AFG Afghanistan 1951 21,352
4 ALB Albania 1951 8,986
5 AFG Afghanistan 1952 22,532
6 ALB Albania 1952 10,058
7 AFG Afghanistan 1953 23,557
8 ALB Albania 1953 11,123
9 AFG Afghanistan 1954 24,555
10 ALB Albania 1954 12,246
Niektóre alternatywne oznaczenia, które dają ten sam rezultat:
# you can also define the id-variables by column number
melt(wide, id.vars = 1:2)
# as an alternative you can also specify the measure-variables
# all other variables will then be used as id-variables
melt(wide, measure.vars = 3:7)
melt(wide, measure.vars = as.character(1950:1954))
2: z data.table
Można użyć tego samego melt
funkcję w pakiecie reshape2
(która jest rozszerzoną & lepsza realizacja). melt
z data.table
ma również więcej parametrów niż melt
z reshape2
.Można na exaple również podać nazwę zmiennej kolumnie:
library(data.table)
long <- melt(setDT(wide), id.vars=c("Code","Country"), variable.name="year")
niektórych alternatywnych postaciach:
melt(setDT(wide), id.vars = 1:2, variable.name = "year")
melt(setDT(wide), measure.vars = 3:7, variable.name = "year")
melt(setDT(wide), measure.vars = as.character(1950:1954), variable.name = "year")
3: Z tidyr
library(tidyr)
long <- wide %>% gather(year, value, -c(Code, Country))
niektórych alternatywnych zapisów:
wide %>% gather(year, value, -Code, -Country)
wide %>% gather(year, value, -1:-2)
wide %>% gather(year, value, -(1:2))
wide %>% gather(year, value, -1, -2)
wide %>% gather(year, value, 3:7)
wide %>% gather(year, value, `1950`:`1954`)
Jeśli chcesz wykluczyć NA
wartości, można dodać na.rm = TRUE
do melt
, jak również funkcji gather
.
Innym problemem jest to, że dane te wartości zostaną odczytane przez R jak znakowych wartości (jako skutek ,
w liczbach). można naprawić, że z gsub
i as.numeric
:
long$value <- as.numeric(gsub(",", "", long$value))
lub bezpośrednio z data.table
lub dplyr
:
# data.table
long <- melt(setDT(wide),
id.vars = c("Code","Country"),
variable.name = "year")[, value := as.numeric(gsub(",", "", value))]
# tidyr and dplyr
long <- wide %>% gather(year, value, -c(Code,Country)) %>%
mutate(value = as.numeric(gsub(",", "", value)))
danych:
wide <- read.table(text="Code Country 1950 1951 1952 1953 1954
AFG Afghanistan 20,249 21,352 22,532 23,557 24,555
ALB Albania 8,097 8,986 10,058 11,123 12,246", header=TRUE, check.names=FALSE)
nie wiem, czy to był problem, ale funkcje w pakiecie przekształcenia są stopu i odlewane –
i pakiet Reshape została zastąpiona przez reshape2. –
A teraz reshape2 został zastąpiony przez tidyr. – drhagen