2013-07-01 29 views
6

Jestem nowicjuszem w programowaniu równoległym za pomocą GPU, więc przepraszam, jeśli pytanie jest szerokie lub nieprecyzyjne. Jestem świadomy, że istnieje jakaś równoległa funkcja SVD w bibliotece CULA, ale jaka powinna być strategia, jeśli mam dużą liczbę stosunkowo małych macierzy do faktoryzacji? Na przykład mam macierze n o wymiarze d, n jest duże i d jest małe. Jak zrównoważyć ten proces? Czy ktoś mógłby mi dać wskazówkę?Równoczesna implementacja wielu SVD przy użyciu CUDA

Odpowiedz

4

Możesz przejrzeć stanowisko Batched Operations na blogu CULA, aby omówić problem.

EDIT

Z tego co rozumiem z Twojego komentarza poniżej, chcesz każdego wątku, aby obliczyć oddzielny SVD. Tak więc, w zasadzie każdy wątek powinien wykonywać standardowy, sekwencyjny schemat SVD. Dla że niektóre potencjalnie użytecznych odnośników:

Numerical Recipes

Golub, Van Loan, Matrix Computations

Jeśli używasz takiego podejścia, choć obawiam się, że nie będą mogli już korzystać cuBLAS, jak te funkcje nie są wymagalne host od device (chyba że nie masz możliwości obliczeniowych >3.5, zobacz przykład simpleDevLibCUBLAS). Ale w zasadzie w ten sposób myślę, że w jakiś sposób wdrażasz koncepcję wsadową samemu.

Jeśli zdecydujesz się przejść do bardziej standardowego wdrożenia równolegle GPU, poniżej odniesienia może być interesujące:

Singular Value Decomposition on GPU using CUDA

+0

Analogicznie do dozowanego solver/matrycowego kodu odwrotnego zamieszczonym na stronie internetowej dewelopera zarejestrowany CUDA można rozważyć wątek matrix-per-albo podejście matrix-per-thread-bloku. Działa to dobrze, jeśli wielkość partii jest duża, a matryce są bardzo małe. Jakie są typowe wartości dla n i d w twoim przypadku? – njuffa

+0

Tryb wsadowy BLAS ma tylko mnożenie macierzy, prawda? Jak mogę go użyć do SVD? Czy mógłbyś podać przykład kodu, jak podzielić wątki lub bloki na GPU i pozwolić każdej jednostce równolegle wykonać jeden SVD? Na przykład, jeśli n = 500 d = 20. Dzięki! –

+0

Edytowałem mój post. Mam nadzieję, że będzie to pomocne. – JackOLantern

7

Moja poprzednia odpowiedź jest teraz out-of-date. Od lutego 2015 r. CUDA 7 (obecnie w wersji Release Candidate) oferuje pełne możliwości SVD w bibliotece cuSOLVER. Poniżej przedstawiam przykład generowania rozkładu wartości osobliwych za pomocą CUDA cuSOLVER.

Jeśli chodzi o konkretny problem, który się podnosi (obliczanie SVD kilku macierzy małego rozmiaru), należy dostosować przykład, który przedstawię poniżej, za pomocą strumieni. Skojarzyć strumień do każdego zadania można użyć

cudaStreamCreate() 

i

cusolverDnSetStream() 

kernel.cu

#include "cuda_runtime.h" 
#include "device_launch_parameters.h" 

#include<iostream> 
#include<iomanip> 
#include<stdlib.h> 
#include<stdio.h> 
#include<assert.h> 
#include<math.h> 

#include <cusolverDn.h> 
#include <cuda_runtime_api.h> 

#include "Utilities.cuh" 

/********/ 
/* MAIN */ 
/********/ 
int main(){ 

    // --- gesvd only supports Nrows >= Ncols 
    // --- column major memory ordering 

    const int Nrows = 7; 
    const int Ncols = 5; 

    // --- cuSOLVE input/output parameters/arrays 
    int work_size = 0; 
    int *devInfo;   gpuErrchk(cudaMalloc(&devInfo,   sizeof(int))); 

    // --- CUDA solver initialization 
    cusolverDnHandle_t solver_handle; 
    cusolverDnCreate(&solver_handle); 

    // --- Setting the host, Nrows x Ncols matrix 
    double *h_A = (double *)malloc(Nrows * Ncols * sizeof(double)); 
    for(int j = 0; j < Nrows; j++) 
     for(int i = 0; i < Ncols; i++) 
      h_A[j + i*Nrows] = (i + j*j) * sqrt((double)(i + j)); 

    // --- Setting the device matrix and moving the host matrix to the device 
    double *d_A;   gpuErrchk(cudaMalloc(&d_A,  Nrows * Ncols * sizeof(double))); 
    gpuErrchk(cudaMemcpy(d_A, h_A, Nrows * Ncols * sizeof(double), cudaMemcpyHostToDevice)); 

    // --- host side SVD results space 
    double *h_U = (double *)malloc(Nrows * Nrows  * sizeof(double)); 
    double *h_V = (double *)malloc(Ncols * Ncols  * sizeof(double)); 
    double *h_S = (double *)malloc(min(Nrows, Ncols) * sizeof(double)); 

    // --- device side SVD workspace and matrices 
    double *d_U;   gpuErrchk(cudaMalloc(&d_U, Nrows * Nrows  * sizeof(double))); 
    double *d_V;   gpuErrchk(cudaMalloc(&d_V, Ncols * Ncols  * sizeof(double))); 
    double *d_S;   gpuErrchk(cudaMalloc(&d_S, min(Nrows, Ncols) * sizeof(double))); 

    // --- CUDA SVD initialization 
    cusolveSafeCall(cusolverDnDgesvd_bufferSize(solver_handle, Nrows, Ncols, &work_size)); 
    double *work; gpuErrchk(cudaMalloc(&work, work_size * sizeof(double))); 

    // --- CUDA SVD execution 
    cusolveSafeCall(cusolverDnDgesvd(solver_handle, 'A', 'A', Nrows, Ncols, d_A, Nrows, d_S, d_U, Nrows, d_V, Ncols, work, work_size, NULL, devInfo)); 
    int devInfo_h = 0; gpuErrchk(cudaMemcpy(&devInfo_h, devInfo, sizeof(int), cudaMemcpyDeviceToHost)); 
    if (devInfo_h != 0) std::cout << "Unsuccessful SVD execution\n\n"; 

    // --- Moving the results from device to host 
    gpuErrchk(cudaMemcpy(h_S, d_S, min(Nrows, Ncols) * sizeof(double), cudaMemcpyDeviceToHost)); 
    gpuErrchk(cudaMemcpy(h_U, d_U, Nrows * Nrows  * sizeof(double), cudaMemcpyDeviceToHost)); 
    gpuErrchk(cudaMemcpy(h_V, d_V, Ncols * Ncols  * sizeof(double), cudaMemcpyDeviceToHost)); 

    std::cout << "Singular values\n"; 
    for(int i = 0; i < min(Nrows, Ncols); i++) 
     std::cout << "d_S["<<i<<"] = " << std::setprecision(15) << h_S[i] << std::endl; 

    std::cout << "\nLeft singular vectors - For y = A * x, the columns of U span the space of y\n"; 
    for(int j = 0; j < Nrows; j++) { 
     printf("\n"); 
     for(int i = 0; i < Nrows; i++) 
      printf("U[%i,%i]=%f\n",i,j,h_U[j*Nrows + i]); 
    } 

    std::cout << "\nRight singular vectors - For y = A * x, the columns of V span the space of x\n"; 
    for(int i = 0; i < Ncols; i++) { 
     printf("\n"); 
     for(int j = 0; j < Ncols; j++) 
      printf("V[%i,%i]=%f\n",i,j,h_V[j*Ncols + i]); 
    } 

    cusolverDnDestroy(solver_handle); 

    return 0; 

} 

Utilities.cuh

#ifndef UTILITIES_CUH 
#define UTILITIES_CUH 

extern "C" int iDivUp(int, int); 
extern "C" void gpuErrchk(cudaError_t); 
extern "C" void cusolveSafeCall(cusolverStatus_t); 

#endif 

Utilities.cu

#include <stdio.h> 
#include <assert.h> 

#include "cuda_runtime.h" 
#include <cuda.h> 

#include <cusolverDn.h> 

/*******************/ 
/* iDivUp FUNCTION */ 
/*******************/ 
extern "C" int iDivUp(int a, int b){ return ((a % b) != 0) ? (a/b + 1) : (a/b); } 

/********************/ 
/* CUDA ERROR CHECK */ 
/********************/ 
// --- Credit to http://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-using-the-cuda-runtime-api 
void gpuAssert(cudaError_t code, char *file, int line, bool abort=true) 
{ 
    if (code != cudaSuccess) 
    { 
     fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line); 
     if (abort) { exit(code); } 
    } 
} 

extern "C" void gpuErrchk(cudaError_t ans) { gpuAssert((ans), __FILE__, __LINE__); } 

/**************************/ 
/* CUSOLVE ERROR CHECKING */ 
/**************************/ 
static const char *_cudaGetErrorEnum(cusolverStatus_t error) 
{ 
    switch (error) 
    { 
     case CUSOLVER_STATUS_SUCCESS: 
      return "CUSOLVER_SUCCESS"; 

     case CUSOLVER_STATUS_NOT_INITIALIZED: 
      return "CUSOLVER_STATUS_NOT_INITIALIZED"; 

     case CUSOLVER_STATUS_ALLOC_FAILED: 
      return "CUSOLVER_STATUS_ALLOC_FAILED"; 

     case CUSOLVER_STATUS_INVALID_VALUE: 
      return "CUSOLVER_STATUS_INVALID_VALUE"; 

     case CUSOLVER_STATUS_ARCH_MISMATCH: 
      return "CUSOLVER_STATUS_ARCH_MISMATCH"; 

     case CUSOLVER_STATUS_EXECUTION_FAILED: 
      return "CUSOLVER_STATUS_EXECUTION_FAILED"; 

     case CUSOLVER_STATUS_INTERNAL_ERROR: 
      return "CUSOLVER_STATUS_INTERNAL_ERROR"; 

     case CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED: 
      return "CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED"; 

    } 

    return "<unknown>"; 
} 

inline void __cusolveSafeCall(cusolverStatus_t err, const char *file, const int line) 
{ 
    if(CUSOLVER_STATUS_SUCCESS != err) { 
     fprintf(stderr, "CUSOLVE error in file '%s', line %d\n %s\nerror %d: %s\nterminating!\n",__FILE__, __LINE__,err, \ 
           _cudaGetErrorEnum(err)); \ 
     cudaDeviceReset(); assert(0); \ 
    } 
} 

extern "C" void cusolveSafeCall(cusolverStatus_t err) { __cusolveSafeCall(err, __FILE__, __LINE__); } 
+0

Co sądzisz o tym podejściu w porównaniu do MAGMA? –

+1

@AndreasYankopolus Nie porównałem dwóch bibliotek, przepraszam. – JackOLantern