Należy rozważyć dekompozycję osobliwą M = USV *. Następnie rozpad wartości własnej M * M daje M * M = V (S * S) V * = VS * U * USV *. Chciałbym zweryfikować tę równość z numpy pokazując, że wektory własne zwracane przez eigh
funkcji są takie same jak te zwracane przez svd
funkcji:Wektory własne obliczone za pomocą numpy's eigh i svd nie pasują do
import numpy as np
np.random.seed(42)
# create mean centered data
A=np.random.randn(50,20)
M= A-np.array(A.mean(0),ndmin=2)
# svd
U1,S1,V1=np.linalg.svd(M)
S1=np.square(S1)
V1=V1.T
# eig
S2,V2=np.linalg.eigh(np.dot(M.T,M))
indx=np.argsort(S2)[::-1]
S2=S2[indx]
V2=V2[:,indx]
# both Vs are in orthonormal form
assert np.all(np.isclose(np.linalg.norm(V1,axis=1), np.ones(V1.shape[0])))
assert np.all(np.isclose(np.linalg.norm(V1,axis=0), np.ones(V1.shape[1])))
assert np.all(np.isclose(np.linalg.norm(V2,axis=1), np.ones(V2.shape[0])))
assert np.all(np.isclose(np.linalg.norm(V2,axis=0), np.ones(V2.shape[1])))
assert np.all(np.isclose(S1,S2))
assert np.all(np.isclose(V1,V2))
Ostatnie twierdzenie nie powiedzie się. Czemu?
Możesz dodać liczba dodatnia do wszystkich elementów diagonalnych, tj. spraw, aby M2 = M + a * I, gdzie a jest wystarczająco duże, aby uzyskać dodatni semisfnit M2. Następnie SVD i eigh powinni się lepiej zgodzić. –