kdb + ma funkcję aj, która jest zwykle używana do łączenia tabel w kolumnach czasu.KDB + jak asof dołączyć do danych timeseries w pandy?
Oto przykład, gdzie mam tabele transakcji i ofert i otrzymuję dominującą ofertę dla każdego handlu.
q)5# t
time sym price size
-----------------------------
09:30:00.439 NVDA 13.42 60511
09:30:00.439 NVDA 13.42 60511
09:30:02.332 NVDA 13.42 100
09:30:02.332 NVDA 13.42 100
09:30:02.333 NVDA 13.41 100
q)5# q
time sym bid ask bsize asize
-----------------------------------------
09:30:00.026 NVDA 13.34 13.44 3 16
09:30:00.043 NVDA 13.34 13.44 3 17
09:30:00.121 NVDA 13.36 13.65 1 10
09:30:00.386 NVDA 13.36 13.52 21 1
09:30:00.440 NVDA 13.4 13.44 15 17
q)5# aj[`time; t; q]
time sym price size bid ask bsize asize
-----------------------------------------------------
09:30:00.439 NVDA 13.42 60511 13.36 13.52 21 1
09:30:00.439 NVDA 13.42 60511 13.36 13.52 21 1
09:30:02.332 NVDA 13.42 100 13.34 13.61 1 1
09:30:02.332 NVDA 13.42 100 13.34 13.61 1 1
09:30:02.333 NVDA 13.41 100 13.34 13.51 1 1
Jak wykonać tę samą operację za pomocą pand? Pracuję z ramkami danych handlu i cytowania, gdzie indeks jest datetime64.
In [55]: quotes.head()
Out[55]:
bid ask bsize asize
2012-09-06 09:30:00.026000 13.34 13.44 3 16
2012-09-06 09:30:00.043000 13.34 13.44 3 17
2012-09-06 09:30:00.121000 13.36 13.65 1 10
2012-09-06 09:30:00.386000 13.36 13.52 21 1
2012-09-06 09:30:00.440000 13.40 13.44 15 17
In [56]: trades.head()
Out[56]:
price size
2012-09-06 09:30:00.439000 13.42 60511
2012-09-06 09:30:00.439000 13.42 60511
2012-09-06 09:30:02.332000 13.42 100
2012-09-06 09:30:02.332000 13.42 100
2012-09-06 09:30:02.333000 13.41 100
Widzę, że pandy mają funkcję asofi, ale nie jest to zdefiniowane w DataFrame, tylko w obiekcie Series. Sądzę, że można było przechodzić przez każdą z serii i dopasowywać je jeden po drugim, ale zastanawiam się, czy istnieje lepszy sposób?
to jest również nazywane * walcowaniem łączenia * – jangorecki